APPLICATION OF COMPUTERS, BIOINFORMATICS,

AND MODELING TO PREDICT EFFECTIVENESS AND

SAFETY OF DIETARY SUPPLEMENTS

Herbert S. Rosenkranz

Florida Atlantic University and University of Pittsburgh

E-mail:rsnkranz@pitt.edu Phone:561-296-1188

Experimental Data + Chemical Structure -> SAR Model

SAR Model: Validation Prediction and Documentation Mechanism Human Expertise

CASE/MULTICASE SAR Technology

SAR and Dietary Supplements

Cancer Chemoprevention (Many Assays) Protein Kinase C Inhibition COX-2 Inhibition Antioxidants Phosphatidylinositol 3-Kinase Inhibition **Tests Used To Ascertain The Ability To Prevent Cancers**

A: inhibition of the induction of mutations in Salmonella caused by 4-nitroquinoline-N-oxide

B: inhibition of mammary tumors induced by DMBA

C: inhibition of Benzo[a]pyrene (B[a]P)-DNA binding

D: inhibition of TPA-induced tyrosine kinase activity,ornithine decarboxylase activity and free radical formation

E: inhibition of morphological transformation

F: inhibition of anchorage independence

G: induction of Phase II enzymes

H: inhibition of AOM-induced aberrant crypt formation

The molecule contains the Biophore (nr.occ.= 1):

*** 6 out of the known 6 molecules (100%) containing such a Biophore are COX-2 Inhibitors

***	QSAR	Contribution :	Constant is	-18.55
**	The f	ollowing Modulators are also prese Log partition coeff.= 3.90; LogP Ln Nr.Bi/Mol.Wt. = -5.60; Nr.B	nt: **2 contribution is ioph/MW contrib. is	2.62 77.78
**	Total	projected QSAR activity		61.85

*** The probability that this molecule is a COX-2 Inhibitor is 87.5% **

** The projected COX-2 Inhibitory Activity is 61.9 CASE units **

The predicted COX-2 inhibiting activity of 5, 3', 4'- trihydroxyflavone

	Biophor	es
Chemical	B1 (2D)	B2
CATECHIN		
CHALCONE		
5,7-DIHYDROXY-4'METHOXYISOFLAVONE		62u
CHRYSIN	53u	
FISETIN	62u	61u
FLAVANONE		
FORMONONETIN	44u	
HESPERETIN	53u	
4'-HYDROXYFLAVONE		50u
2'-HYDROXYGENISTEIN	44u	62u
ISOFLAVONE		
ISORHAMNETIN	71u	63u
KAEMPFEROL	44u	52u
MORIN	44u	62u
QUERCETIN	71u	620
SILYBARIN	53u	024
TANGERETIN		

Predicted COX-2 Inhibiting Activity of Flavonoids

Example of Drug Discovery and/or Design

Dietary Supplements

Long Term Administration Benefits ??? Must be Risk-free SAR Profiling Hazard Identification SAR Analyses of Carcinogenicity Data Bases Identified a 6 Angstrom Lipophilic Toxicophore Associated with Estrogenicity and Carcinogenicity

17β-estradiol

Estrogenic chemicals painted according to lipophilicity. The 6Å 2D biophore is illustrated in 4-methylphenol. All chemicals shown possess the physical distance requirements of the biophore. *Methoxychlor metabolite = 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane; 2-chlorobiphenyl metabolite = 2-chloro-4-hydroxybiphenyl.

Absence of 6Å Descriptor Among Phytoestrogens

Chemical	<u>6Å Descriptor</u>
Diethylstilbestrol	+
β-Estradiol	+
17α-ethinyl estradiol	+
Estrone	+
Resveratrol	+
Genistein	-
Kaempferol	
Quercetin	
Phloretin	
Chrysin	-
Galangin	-
Apigenin	-
Coumestrol	- S - S
Other phytoestrogens also all	negative

Resveratrol, present in Grapes, has been proposed as a Cancer Chemopreventative Agent.

The potential toxicity of Resveratrol has not been investigated. SAR Models of Toxicological Phenomena may be a rapid and cost-effective approach.

Major Biolobical Activities of Resveratrol

Antibacterial and antifungicidal activities Antioxidant activity Free radical scavenging Inhibition of lipid peroxidation Inhibition of eicosanoid synthesis Inhibition of platelet aggregation Chelation of copper Anti-inflammatory activity Vasorelaxing activity Modulation of lipid and lipoprotein metabolism Oestrogenic/anti-oestrogenic activity Anticancer activity

Resveratrol

.

Diethylstilbestrol

β-Estradiol

Structures containing lipophilic phenol moieties

Structure of resveratrol identifying lipophilic structures as well as the 6Å distance descriptor

The molecule contains the Toxicophore (nr.occ.= 1):	
2D fragment : [OH -] < 5.2A> [OH -]	
*** 10 out of the known 11 molecules (91%) containing such	a
Toxicophore are Developmental Toxicants	
*** QSAR Contribution : Constant is	41.69
** The following Modulators are also present:	
Log partition coeff.= 3.52 ;LogP contribution is	-2.82
Water solubility = 4.62;WS contribution is	-4.16
** Total projected OSAR activity	34.71

The molecule also contains the Toxicophore:

CH =CH C < 11 CH

*** 10 out of the known 12 molecules (83%) containing such a Toxicophore are Developmental Toxicants *** OSAR Contribution : Constant is 39.00

	Quant concrebación .	conseance is	55.00
**	Total projected QSAR	activity	39.00
***	The probability that	this molecule is a Developmenta	1 movigant is 0

*** The probability that this molecule is a Developmental Toxicant is 94%

** The projected potency is 74.0 CASE units **

Predicted Developmental Toxicity of Resveratrol

Derivation of a Structural Toxicophore Associated with Developmental Toxicity

The 12 Molecules containing the toxicophore:

cH =cH 1 с < 11 сн

<u>N*</u>	Chemical	Toxicity
2	Propachlor	Active
2	1-Butyl-3-sulfanylurea	Active
1	17-β-Estradiol	Active
2	Aminopterin	Active
4	Diethylstilbestrol	Active
2	Tubocuranine chloride	Marginal
2	Methotrexate	Active
4	Methoxychlor	Active
2	Methyl parathion	Inactive
2	Chlorambucil	Active
1	Linuran	Active
2	Nitrofen	Active
*N indica	tes the number of toxicophores in th	e chemical.

Derivation of a 2D Toxicophore Associated with Developmental Toxicity

The 11 Molecules containing the Toxicophore:

2D fragment formula : [OH -]	< 5.2A> [OH -]
Chemical	Toxicity
Streptomycin	Active
Toluene-3,5-diamine	Active
Aminopterin	Active
Methotrexate	Active
Dexamethasone	Active
6-Azauridine	Active
5-Fluorouracil	Active
Tetracycline	Marginal
Cytarabine	Active
Penicillamine	Active
Propylthiouracil	Active

Predicted	Toxicological	Profile	of	Resveratrol
-----------	---------------	---------	----	-------------

.

SAR Model	Prediction
*Carcinogenicity (Rodents)	N(?)
Mutagenicity (Salmonella)	N
Structural Alert for DNA Reactivity	N
Mutation/Recombination (Drosophila)	N
Mutation (Mouse Lymphoma)	P
SOS Error Prone DNA Repair	N
Sister Chromatid Exchange (in vitro) P
Sister Chromatic Exchange (in vivo)	N
Chromosomal Aberration (in vitro)	N
Induction of Micronuclei (in vivo)	N
Cell Transformation (Balb/3T3)	N
UDS Induction	N
α 2µGlobulin Nephropathy	N
Inhibition of Human Cytochrome P450	2D6 N
Binding to Ah Receptor	N
Malsegregation (Yeast Aneuploidy)	N
Tubulin Polymerization Inhibition	N
Inhibition of GJIC	N
Cellular Toxicity (Balb /3T3)	P
Cellular Toxicity (Hela)	P
Developmental Toxicity (Mice)	P
Developmental Toxicity (Rats)	P
Developmental Toxicity (Rabbits)	N
Developmental Toxicity (Hamsters)	N
Developmental Toxicity (Humans)	N
Anticarcinogenesis (Rodents)	N

CONCLUSION Resveratrol has too many Liabilities to be used as a Dietary Supplement for Prolonged Periods especially as its **Beneficial Effects in Humans** have, as yet, not been established.

Indole-3-Carbinol

SAR-Generated Profile Indicates Potentials:

1.to Act as a Rodent Anticarcinogen.

2.to Inhibit Human Cyp2D6 (This is not necessarily a Liability, as many Therapeutics, such as β -Blockers, also inhibit Cyp2D6.)

Indole-3-carbinol

The molecule contains the Biophore

***12 out of the known 14 molecules (86%) containing such a biophore are inhibitors of P4502D6.
***QSAR Contribution : Constant is -25.48

**	The following Modulators an	e also present:		
	Ln Nr.Bi/Mol.Wt. = -4.99 ; Hard/Soft index is = 0.67 ;	Nr.Bioph/MW contribution is Its contribution is	71.27 -12.08	
**	Total projected QSAR activi	ty	33.71	

*** The probability that this molecule is an Inhibitor of P4502D6 is 86.0% **

** The projected P450 inhibitions activity is 33.7 CASE units **

The ability of indole-3-carbinol to inhibit human cytochrome P4502D6

Cytochrome P450 2D6 Inhibition The 14 Molecules containing fragment :

are :

1	in molecule	4
1	in molecule	11
1	in molecule	12
1	in molecule	14
1	in molecule	53
2	in molecule	59
1	in molecule	60
1	in molecule	61
1	in molecule	62
1	in molecule	66
2	in molecule	83
1	in molecule	89
1	in molecule	9(
2	in molecule	93

Propranolol Cinchonine Ajmalicine Gelsemine Ajmaline Amitriptyline CHLORPROMAZINE Domperidone Yohimbine Fluphenazine Carbamazepine Debrisoquin STRYCHNINE Nortriptyline

Indole-3-carbinol

of	activity	38
of	activity	43
of	activity	97
of	activity	14
of	activity	52
of	activity	30
of	activity	43
of	activity	42
of	activity	28
of	activity	57
of	activity	14
of	activity	28
of	activity	26
of	activity	38

BPThampatty [2001]

The molecule contains the Biophore OH -CH2

* 5 out of the known 6 molecules (83%) containing such a Biophore are

Anticarcinogens.

*** QSAR Contribution :Constant is39.00** Total projected QSAR activity39.00*** The probability that this molecule is an Anticarcinogen is 86.0%**

** The projected anticarcinogenic potency is 39.0 CASE units **

Projected anticarcinogenic activity of indole-3-carbinol

Should we wish to Abolish the Potential to Inhibit Cyp2D6, we can Methylate the C-7 Position?

 Abolishes the Cyp2D6 Inhibitory Activity
 Does not create Any New Toxicological Liabilities.

3. Augments the Anticarcinogenic Potential by generating an additional Pharmacophore

** The molecule does not contain any known Biophore ** it is therefore presumed to be INACTIVE

Prediction of the inability of 7-methyl indole-3-carbinol to inhibit human cytodrome P4502D6.

The molecule contains the expanded Biophore (nr.occ.= 1):

cH =cH C c.

*** 6 out of the known 6 molecules (100%) containing such a Biophore are anticarcinogens. (conf.level= 98%)

***	QSAR	Contribution	•	Constant is	39.00
**	Total	projected QS	AR activity		39.00

The molecule also contains the Biophore: OH -CH2-*** 5 out of the known 6 molecules (83%) containing such a Biophore are anticarcinogens. (conf.level= 94%)

***	QSAR	Contribution :	Constant is 39.00
**	Total	projected QSAR activity	39.00

** The probability that this molecule is an anticarcinogen is 90.0% **

** The projected anticarcinogenic potency is 78.0 CASE units **

The projected anticarcinogenic activity of 7-methyl indole-3-carbinol

γ-Butyrolactone

Dietary Supplement Illicit Recreational Drug Animal Toxicity: Negative Humans: Coma, Deaths

FIGURE 1 Putative biotransformations of γ -butyrolactone. E1 and E3 are P-450 monoxygenase catalyzed hydroxylations; E4 represents an esterase-catalyzed hydrolysis (i.e. gamma-lactonase); E5 is catalyzed by GHB dehydrogenase. R2 represents a spontaneous decomposition.

<u>**y-Butyrolactone (GBL)**</u>

Hypothesis:

CYP2D6 inhibition not toxic <u>per se</u> Humans: Mixed exposures GBL users also abuse other Agents, ethanol Inhibition of CYP2D6 may inhibit detoxification of other drugs!

Identification of Candidate Agents

Data Mining:

Virtual Similarity Index

Identification of new candidates

Similarity Indices: Procedure

- 1. Generate "Virtual" Toxicological Profiles of Test Chemicals
- 2. Compare Nature of Overlaps
- 3. Determine expected Prevalence of Such Overlaps among 10,000 Chemicals in Commerce and Industry

Virtual Toxicological Profiles

Model	<u>Genistein</u>	<u>Curcumin</u>	Rofecovib
CACombined	act	Ĩ	1
SalmNTP	act	i	i
MLA/GT	act	act	act
SensIr	act	act	1
ACD	act	act	L
RespHyper	1	I	act
Eyelrr	1	act	1
MoMTD	Í.	L	1
RaMTD	act	act	1
BalbTox	act	act	act
Minnow	act	act	1
Rat LD50	act	1	1
HamDev	1	1	1
Hum/FDA De	1	1	1
SCEinvitro	act	act	act
MoSCE	act	act	act
ChrAber	1	act	1
Micronucle	act	act	act
UDS	1	1	I
SOS Chromo	1	1	I
alpha2mu N	. 1	act	I
Ah recepto	1	1	I s
HeLaTox	act	act	I
Biodegrada	act	act	I
iGJIC	1	1	L
Skin Perme	act	act	act
inhP4502D6	1	1	1

*Only a subset of SAR models were used

Similarity Indices

Genistein + Curcumin	0.6%
Genistein + Curcumin + Resveratrol	0.6%*
Genistein + Rofecoxib	5.6%
Curcumin + Rofecoxib	5.4%
Resveratrol + DES	0.8%
Resveratrol + Rofecoxib	6.6%
DES + Rofecoxib	5.6%

Based upon toxicological profiles of 10,000 chemicals

* Probability that this is a result of chance is 0.2%

Chemicals Sharing Profile with Genistein and Curcumin

5-Hydroxytienilic Acid Dobutamine Ethacrynic Acid Flecainide LY171883 Metabutoxycaine Propanidid Protriptyline **Tienilic Acid** Tienilic Acid (Isomer3) 4'-Hydroxyflavone 4',5-Dihydroxyflavone 4',7,8-Trihydroxyflavone 3',5,7-Trihydroxy-4'-Methoxyflavone Benzenesulfonamide, N-(((1-met 2-Propanol, 1-((1,1-dimethylet Spiro(benzofuran-2(3H), 1'-(2) Spiro(benzofuran-2(3H), 1'-(3)

Tienilic Acid

Propanamid

0

Future

Identification of Targets → Models

Pharmacogenomics

- (1) Readily integrated into other computer-based models
- (2) To define new targets → models
- (3) To explain variation in individual response → reduce uncertainty