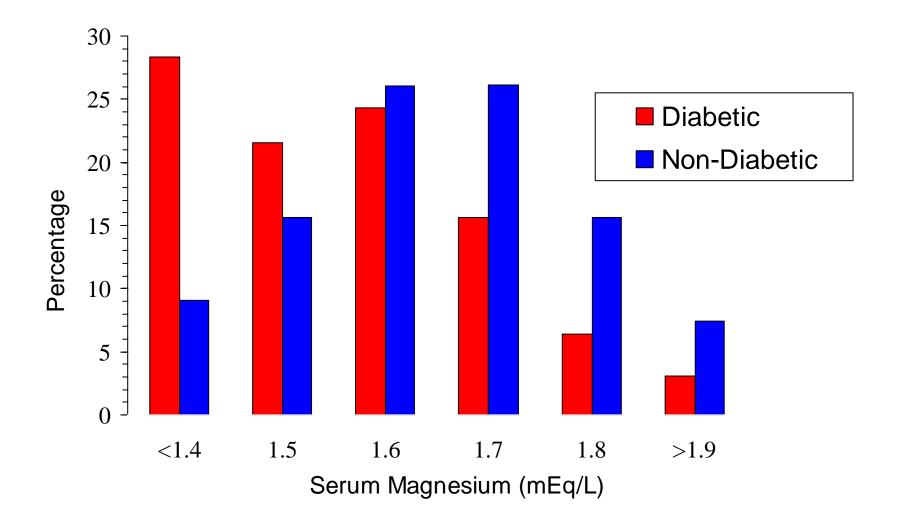
Lessons from Observational Studies Evaluating Magnesium Intakes: Can They Predict Outcomes for Clinical Intervention

> W. H. Linda Kao, PhD The Johns Hopkins University School of Hygiene and Public Health

## Magnesium

- Second most abundant intracellular cation
- Adult human body contains ~24g of Mg
  - ~50% in bones
  - 49% in soft tissue
  - 1% in extracellular fluid
- Absorption inversely related to dietary intake
- Primarily regulated by the kidney and the gastrointestinal tract
- Physiologic functions
  - Reactions involving ATP and nucleotide triphosphates
  - Insulin receptor/tyrosine kinase signal transduction pathway


### **Assessment of Magnesium**

- Serum magnesium concentration
- Erythrocyte magnesium concentrations
- Leukocyte magnesium concentration
- 24-hour magnesium excretion
- Intracellular magnesium concentration using nuclear magnetic resonance (NMR) spectroscopy
- Dietary magnesium intake using dietary questionnaires

#### Hypomagnesemia and Type 2 Diabetes

- Type 2 diabetes mellitus leads to
  - Excess risk of cardiovascular disease
  - Reduced life expectancy
  - Few well-established, modifiable risk factors
- In animal models, magnesium supplementation prevents diabetes
- In humans, magnesium
  - Enhances short-term glucose handling
  - Inversely associated with type 2 diabetes cross-sectionally
- Few large, population-based, prospective studies

#### Prevalence of Type 2 Diabetes by Serum Magnesium Status in 15,539 Middle-Aged Adults from the ARIC Study



#### **Research Questions**

- Can incident type 2 diabetes be predicted by
  - Low serum magnesium concentration
  - Low dietary magnesium intake

## Atherosclerosis Risk in Communities (ARIC) Study

Design: Participants:

Exposure:

Outcome:

Analysis:

Prospective cohort study

- 12,128 non-diabetic middle-aged adults from 4 US communities
- Serum and dietary magnesium levels measured before onset of diabetes
- Incident type 2 diabetes over 6 years of follow-up
- Logistic regression model

Kao WHL Arch. Int. Med. 1999;159:2151-5159

## Assessment of Magnesium and Type 2 Diabetes

- Serum magnesium at baseline (mEq/L) Calmagite method
- Dietary magnesium intake at baseline (gm/kcal) Modified Willett's Food Frequency Questionnaire
- Type 2 diabetes was defined as the presence of any of the following:
  - Report of physician-diagnosed diabetes
  - Use of insulin or oral hypoglycemic agents
  - Fasting blood glucose ≥ 126 mg/dL
  - Non-fasting blood glucose ≥ 200 mg/dl

#### Incidence Rate per 1000 Person-Years of Diabetes Over Six Years of Follow-Up

| Ethnicity | Serum Magnesium, mEq/L |      |      |      |      |         |
|-----------|------------------------|------|------|------|------|---------|
|           | 0.5-1.4                | 1.5  | 1.6  | 1.7  | 1.8  | 1.9-2.5 |
| Black     | 20.9                   | 18.3 | 16.6 | 15.7 | 17.5 | 18.4    |
| White     | 16.5                   | 13.6 | 9.2  | 8.4  | 6.9  | 7.3     |

#### Adjusted Relative Odds (95% CI) of Diabetes Associated with Serum Magnesium

| Mg, mEq/L   | Black            | White            |
|-------------|------------------|------------------|
| 0.5-1.4     | 0.93 (0.48-1.79) | 1.94 (1.22-3.07) |
| 1.5         | 0.83 (0.43-1.58) | 1.68 (1.11-2.55) |
| 1.6         | 0.84 (0.46-1.59) | 1.25 (0.84-1.87) |
| 1.7         | 0.77 (0.40-1.48) | 1.15 (0.77-1.72) |
| 1.8         | 0.91 (0.45-1.82) | 0.98 (0.63-1.52) |
| 1.9-2.6     | 1.00 (ref.)      | 1.00 (ref.)      |
| P for Trend | 0.636            | <0.001           |

Adjusted for age, sex, education, family history of diabetes, BMI, waist to hip ratio, physical activities, alcohol consumption, diuretic use, serum calcium and potassium

#### Adjusted Relative Odds (95% CI) of Diabetes Associated with Dietary Magnesium

| Mg (mg/1000 kcal) | Black            | White            |
|-------------------|------------------|------------------|
| ≤130              | 1.09 (0.57-2.06) | 1.11 (0.76-1.62) |
| 130-160           | 1.28 (0.75-2.18) | 1.01 (0.71-1.43) |
| 161-190           | 1.44 (0.93-2.22) | 1.13 (0.84-1.51) |
| >190              | 1.00 (reference) | 1.00 (reference) |
| P for Trend       | 0.722            | 0.374            |

Adjusted for age, sex, education, family history of diabetes, BMI, waist to hip ratio, physical activities, alcohol consumption, diuretic use, dietary calcium and potassium.

## Conclusions

- Significant graded relationship between low serum Mg and incident type 2 diabetes in whites
- Lower serum Mg in blacks, but no association with incident type 2 diabetes
- No association between dietary Mg as measure by food frequency questionnaire and incident type 2 diabetes

## Iowa Women's Health Study

Design:

Participants:

Exposure:

Outcome:

Analysis:

Prospective cohort study

35,988 non-diabetic women aged 55 – 69 yr. at baseline

Dietary magnesium intake based on a 127-item food frequency questionnaire

Self-reported incident type 2 diabetes over 6 years of follow-up

Cox proportional model

Meyer KA, Am J Clin Nutr 2000;71:921-30

#### Adjusted Relative Risk (95% CI) of Diabetes Associated with Dietary Magnesium

**Iowa Women's Health Study** 

Magnesium Intake (mg/day)

| < 242     | 1.00 (reference)   |
|-----------|--------------------|
| 242 - 270 | 0.82 (0.69 – 0.99) |
| 271 – 297 | 0.86 (0.71 – 1.03) |
| 298 - 332 | 0.88 (0.73 – 1.06) |
| > 332     | 0.76 (0.62 – 0.95) |

Adjusted for age, total energy intake, BMI, waist-to-hip ratio, education, smoking, alcohol intake, physical activity, and dietary intake of whole grains and cereal fiber

## **Nurses' Health Study**

Design:

Participants:

Exposure:

Outcome:

Analysis:

Prospective cohort study

84,360 non-diabetic women aged 34 - 59 yr. at baseline (1980)

Dietary magnesium intake based on a 61-item food frequency questionnaire

Self-reported incident type 2 diabetes over 6 years of follow-up

Cox proportional model

Colditz GA, Am J Clin Nutr 1992;55:1018-23

#### Adjusted Relative Risk (95% CI) of Diabetes Associated with Dietary Magnesium

#### **Nurses' Health Study**

| Magnesium<br>Quintile | 1980 – 1986<br>(N = 84,360) | 1986 – 1992<br>(N = 65,173) |
|-----------------------|-----------------------------|-----------------------------|
| 1                     | 1.00 (reference)            | 1.00 (reference)            |
| 2                     | 1.01                        | 0.91 (0.74 – 1.10)          |
| 3                     | 1.04                        | 0.84 (0.69 – 1.03)          |
| 4                     | 0.92                        | 0.82 (0.67 – 1.01)          |
| 5                     | 0.95 (0.56 – 1.61)          | 0.62 (0.50 – 0.78)          |
| P for trend           |                             | < 0.01                      |

Adjusted for age, BMI, alcohol intake, family history of diabetes, prior weight change, energy intake, and potassium and calcium intake

## Limitations of Existing Observational Studies

- Dietary assessment assessed at one point in time and may lead to misclassification
- Correlation between dietary assessment of magnesium intake and biomarkers of magnesium remains uncertain
- Difficulty in teasing apart effects of other minerals
- Other unknown potential confounders may exist
- Follow-up time may be inadequate
- Type 2 diabetes definition not by oral glucose tolerance test (the gold standard)

# Can increasing magnesium intake prevent type 2 diabetes?

#### **Guidelines for Establishing Causality**

- Temporal relationship exposure occurs before development of disease
- Strength of association the stronger the more likely
- Dose-response relationship
- Replication of the findings
- Biologic plausibility
- Consideration of alternate explanations confounding
- Cessation of exposure leads to reduced risk of disease

#### Implications

- Decreased serum magnesium may alter natural history of type 2 diabetes
- Decreased magnesium intake may increase risk of type 2 diabetes
- Better understanding of correlations between magnesium intake and biomarkers of magnesium warranted
- Pharmacologic doses of magnesium as a preventive measure for development of type 2 diabetes remains to be investigated